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Abstract
The framework of Bayesian image restoration for multi-valued images by
means of the Q-Ising model with nearest-neighbour interactions is presented.
Hyperparameters in the probabilistic model are determined so as to maximize
the marginal likelihood. A practical algorithm is described for multi-
valued image restoration based on the Bethe approximation. The algorithm
corresponds to loopy belief propagation in artificial intelligence. We conclude
that, in real world grey-level images, the Q-Ising model can give us good
results.

PACS numbers: 02.50−r, 02.50.Cw, 02.50.Tt, 05.20.−y, 05.50.+q, 75.10.Nr,
89.70.+c

1. Introduction

Statistical-mechanical methods are applicable to probabilistic information processing [1].
Conversely, many problems in probabilistic information processing have created research
ideas in statistical mechanics. Some of these ideas have been revived as new paradigms
for powerful information technologies in the interdisciplinary studies of statistical mechanics
and computer science since many notions that are well known in the context of spin glass
problems are still not so familiar in the context of computer science. A number of new
subject areas that have not been considered by physicists exploit the theory of spin glass
problems or other problems in statistical mechanics. Probabilistic image restoration is one of
these examples. On the basis of Bayes’ formula and with an a priori probability distribution
assumed for the original image, one creates a probabilistic image restoration in the form of an
a posteriori probability distribution for the original image when the degraded image is given.
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The a priori distribution is often assumed to correspond to a classical spin system, represented
by an Ising model, a Gaussian model and so on [2]. Moreover, practical algorithms are
constructed by using simulated annealing [3], the mean-field approximation [4, 5], the cluster
variation method [6] and so on.

One statistical-mechanical method that has been widely applied to many problems in
computer science is that of advanced mean-field theory [7]. The mean-field approximation
and the Bethe approximation can be formulated by means of the variational principle for the
minimization of approximate free energies. Recently, some computer scientists have become
interested in such variational approaches for advanced mean-field theory. It has been suggested
that the extremum conditions with respect to the effective fields for the approximate free energy
in the Bethe approximation are equivalent to simultaneous fixed-point equations associated
with belief propagation in the context of probabilistic inference in artificial intelligence [8].

In Bayesian image restoration, we have to determine some model parameters, such as an
interaction parameter and so on. These model parameters are referred to as hyperparameters
in statistics. In practice it is common for the hyperparameters to be determined so as to
maximize a marginal likelihood [2, 4, 5], which is expressed in terms of free energies of
the a priori probabilistic model and the a posteriori probabilistic model. Tanaka has applied
the Bethe approximation to the estimation of hyperparameters by maximizing the marginal
likelihood [2, 9]. In particular, in [2], the Potts model was adopted as an a priori probability
distribution, and the results of the Bethe approximation were compared with those using
mean-field approximations for hyperparameter estimation in the context of multi-level image
restoration. Tanaka [2] concluded that the Bethe approximation can improve the quality of
image restoration over that achieved by mean-field approximation. Patterns generated by
Monte Carlo simulations from the Potts model have many spatially flat parts, but real world
images are characterized more by spatially smooth parts than by spatially flat parts. The
Q-Ising model is a classical spin system which can generate images with many spatially
smooth parts [10]. Here, Q is the number of possible states in the model. For the case of
Q = 3, the Q-Ising model is a special case of the Blum–Emery–Griffiths model, which has
complicated critical phenomena [11].

In the present paper, we investigate Bayesian image restoration with hyperparameters
estimated by maximizing the marginal likelihood when we adopt a Q-Ising model as the
a priori probability distribution. The maximization of the marginal likelihood is achieved by
using the Bethe approximation. In section 2, we explain how to construct the a posteriori
probability distributions when the a priori probability distribution is assumed to be a Q-Ising
model with only nearest-neighbour interactions. In section 3, we give the basic framework of
hyperparameter estimation based on maximization of the marginal likelihood. In section 4, we
summarize the simultaneous equations for marginal probability distributions in any classical
spin system with spatially non-uniform external fields and nearest-neighbour interactions in the
Bethe approximation and explain how to calculate the optimal values of the hyperparameters
numerically. In section 5, we give some numerical experiments. Conclusions are given in
section 6.

2. Bayesian image analysis based on the Q-Ising model

We consider an image on a square lattice � ≡ {i} such that each pixel takes one of the
grey-levels Q = {0, 1, 2, . . . ,Q − 1}, with 0 and Q − 1 corresponding to black and white,
respectively. The intensities at pixel i in the original image and the degraded image are
regarded as random variables denoted by Fi and Gi , respectively. Then the random fields of
intensities in the original image and the degraded image are represented by F ≡ {Fi |i ∈ �}
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and G ≡ {Gi |i ∈ �}, respectively. The actual original image and the degraded image are
denoted by f = {fi} and g = {gi}, respectively.

The probability that the original image is f , Pr{F = f}, is called the a priori probability
of the image. In the Bayes formula, the a posteriori probability Pr{F = f |G = g}, that the
original image is f when the given degraded image is g, is expressed as

Pr{F = f |G = g} = Pr{G = g
∣∣F = f

}
Pr{F = f}∑

z Pr{G = g|F = z} Pr{F = z} (1)

where the summation
∑

z is taken over all possible configurations of images z = {zi |i ∈ �}.
The probability Pr{G = g|F = f} is the conditional probability that the degraded image is g
when the original image is f and describes the degradation process.

In the present paper, it is assumed that the degraded image g is generated from the original
image f by changing the intensity of each pixel to another intensity with the same probability
p, independently of the other pixels; the probability that the intensity is unchanged is therefore
1−(Q−1)p, which constrains p to lie in the range 0 � p � 1/Q. The conditional probability
distribution associated with the degradation process when the original image is f is

Pr{G = g|F = f} = Pr{G = g|F = f , p}
=

∏
i∈�

(
p
(
1 − δfi ,gi

)
+

(
1 − (Q − 1)p

)
δfi ,gi

)
(2)

where δa,b is the Kronecker delta. Moreover, the a priori probability distribution that the
original image is f is assumed to be

Pr{F = f} = Pr{F = f |α} =
∏

ij∈Bexp
(− 1

2α(fi − fj )
2
)

∑
z

∏
ij∈Bexp

(− 1
2α(zi − zj )2

) (3)

where B is the set of all the nearest-neighbour pairs of pixels on the square lattice �. By
substituting equations (2) and (3) into equation (1), we obtain

Pr{F = f |G = g, α, p} = 1

Z(α, p)

(∏
i∈�

exp
(
β(p)δfi ,gi

))
∏

ij∈B

exp

(
−1

2
α(fi − fj )

2

)


(4)

where Z(α, p) is a normalization constant and β(p) is defined by

β(p) ≡ ln

(
1 − Qp + p

p

)
. (5)

3. Hyperparameter estimation

In the maximum marginal likelihood estimation approach, the hyperparameters α and p are
determined so as to maximize the marginal likelihood Pr{G = g|α, p}, where

Pr{G = g|α, p} ≡
∑

z

Pr{G = g|F = z, p} Pr{F = z|α}. (6)

We denote the maximizers of the marginal likelihood Pr{G = g|α, p} by α̂ and p̂. Thus

(α̂, p̂) = arg max
(α,p)

Pr{G = g|α, p}. (7)

The conditions for an extremum of Pr{G = g|α, p} at p = p̂ and α = α̂ can be reduced to
the following simultaneous equations:



11026 K Tanaka et al∑
i∈�

∑
zi∈Q

(
1 − δzi ,gi

)
Pr{Fi = zi |G = g, α̂, p̂} = (Q − 1)p (8)

∑
ij∈B

∑
zi∈Q

∑
zj ∈Q

(zi − zj )
2 Pr{Fi = zi, Fj = zj |G = g, α̂, p̂}

=
∑
ij∈B

∑
zi∈Q

∑
zj ∈Q

(zi − zj )
2 Pr{Fi = zi, Fj = zj |α̂}. (9)

Here Pr{Fi = fi |G = g, α, p}, Pr{Fi = fi, Fj = fj |G = g, α, p} and Pr{Fi = fi, Fj =
fj |α} are marginal probabilities defined by

Pr{Fi = fi |G = g, α, p} ≡
∑

z

δfi ,zi
Pr{F = z|G = g, α, p} (10)

Pr{Fi = fi, Fj = fj |G = g, α, p} ≡
∑

z

δfi ,zi
δfj ,zj

Pr{F = z|G = g, α, p} (11)

Pr{Fi = fi, Fj = fj |α} ≡
∑

z

δfi ,zi
δfj ,zj

Pr{F = z|α}. (12)

Given the estimates α̂ and p̂, the restored image f̂ = {f̂ i |i ∈ �} is determined by

f̂ i = arg max
fi∈Q

Pr{Fi = fi |G = g, α, p}. (13)

This way of producing a restored image is called maximum posterior marginal estimation
[12, 13].

4. Bethe approximation for classical spin systems

In the above framework, we have to calculate the marginal probability distributions
Pr{Fi = fi |G = g, α, p} (i ∈ �), Pr{Fi = fi, Fj = fj |G = g, α, p} (ij ∈ B) and
Pr{Fi = fi, Fj = fj |α} (ij ∈ B). Since it is hard to calculate these marginal probability
distributions exactly, we apply the Bethe approximation to the above probabilistic models
given by Pr{F = f |G = g, α, p} and Pr{F = f |α}.

Next we summarize the simultaneous equations to be satisfied by marginal probability
distributions, namely

ρi(fi) =
∑

z

δfi ,zi
ρ(z) (14)

ρij (fi, fj ) =
∑

z

δfi ,zi
δfj ,zj

ρ(z) (15)

in the Bethe approximation for a probability distribution ρ(f) defined by

ρ(f) =
∏

i∈�ψi(fi)
∏

ij∈Bφij (fi, fj )∑
z

∏
i∈�ψi(zi)

∏
ij∈Bφij (zi, zj )

. (16)

Here φij (ξ, ξ ′) and ψi(ξ) are always positive for any values of ξ ∈ Q and ξ ′ ∈ Q. The
detailed derivation is similar to that given in [2, 9] and here we merely state the results
of the variational calculation in the Bethe approximation. In the Bethe approximation, the
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simultaneous equations for the sets of marginal probabilities {ρi(ξ)|i ∈ �, ξ ∈ Q} and
{ρij (ξ, ξ ′)|ij ∈ B, ξ ∈ Q, ξ ′ ∈ Q} are given by

ρi(ξ) = ψi(ξ)
∏

k∈ci
µk→i (ξ )∑

ζ∈Qψi(ζ )
∏

k∈ci
µk→i (ζ )

(17)

ρij (ξ, ξ ′) =
ψi(ξ)φij (ξ, ξ ′)ψj (ξ

′)
∏

k∈ci\jµk→i (ξ )
∏

l∈cj \iµl→j (ξ
′)∑

ζ∈Q

∑
ζ ′∈Qψi(ζ )φij (ζ, ζ ′)ψj (ζ ′)

∏
k∈ci\jµk→i (ζ )

∏
l∈cj \iµl→j (ζ ′)

(18)

µj→i (ξ ) =
∑

ζ∈Qφij (ξ, ζ )ψj (ζ )
∏

k∈cj \iµk→j (ζ )∑
ζ ′∈Q

∑
ζ∈Qφij (ζ ′, ζ )ψj (ζ )

∏
k∈cj \iµk→j (ζ )

. (19)

Here ci ≡ {j |ij ∈ B} is the set of all the nearest-neighbour pixels of i. By setting ψi(ξ) =
exp(β(p)δξ,gi

) and φij (ξ, ξ ′) = exp
(− 1

2α(ξ − ξ ′)2
)
, we obtain the marginal probabilities

Pr{Fi = ξ |G = g, α, p} and Pr{Fi = ξ, Fj = ξ ′|G = g, α, p} as ρi(ξ) and ρij (ξ, ξ ′),
respectively. By setting ψi(ξ) = 1 and φij (ξ, ξ ′) = exp

(− 1
2α(ξ − ξ ′)2

)
, we obtain the

marginal probabilities Pr{Fi = ξ, Fj = ξ ′|α} as ρij (ξ, ξ ′). Though these forms may not be so
familiar to some physicists, ln(µi→j (ξ)) corresponds to the effective field in the conventional
Bethe approximation. In probabilistic inference, the quantity µi→j (ξ) is called a message
propagated from i to j .

Equations (19) have the form of fixed-point equations for the messages µi→j (ξ). In
practical numerical calculations, we solve the simultaneous equations (19) by using iterative
methods. For various values of the hyperparameters α and p, we obtain the marginal
probability distributions Pr{Fi = fi |G = g, α, p}, Pr{Fi = fi, Fj = fj |G = g, α, p}
and Pr{Fi = fi, Fj = fj |α} and search for the optimal set of values, (α̂, p̂), that satisfy
equations (9) and (8) numerically.

5. Numerical experiments

In this section, we report some numerical experiments. The optimal set of values of the
hyperparameters, (α̂, p̂), is determined by means of maximum marginal likelihood estimation
and the Bethe approximation given in sections 3 and 4.

To evaluate restoration performance quantitatively, 20 original images f are simulated
from the a priori probability distribution (3) for the Q-Ising model. We produce a
degraded image g from each original image f by means of the degradation process (2)
for (Q − 1)p = 0.3. By applying the iterative algorithm of the Bethe approximation to
each degraded image g, we obtain estimates of the hyperparameters p̂ and α̂ and the restored
image f̂ for each degraded image g. For each of the cases Q = 3 and Q = 4, one of the
numerical experiments is shown in figures 1 and 2, respectively. We give, in figures 3 and 4,
β(p)- and α-dependences of the left-hand side and the right-hand side of equations (8) and
(9) corresponding to the image restorations shown in figures 1 and 2, respectively. Moreover,
in order to show the achievement of the maximization of marginal likelihood, we give, in
figures 5 and 6, also β(p)- and α-dependences of ln Pr{G = g|α, p} corresponding to the
image restorations shown in figures 1 and 2, respectively. From the 20 degraded images g
and the corresponding restored images f̂ , we calculate the 95% confidence intervals for the
hyperparameters, p̂ and α̂, and the values of the Hamming distance d(f , f̂),

d(f , f̂) ≡ 1

|�|
∑
i∈�

(
1 − δfi ,f̂ i

)
(20)
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(a) (b) (c)

Figure 1. Image restoration based on the Q-Ising model (Q = 3). The original image f
is generated from the a priori probability distribution (3). (a) Original image f (α = 0.65).
(b) Degraded image g ((Q − 1)p = 0.3). (c) Restored image f̂ obtained by the Bethe
approximation.

(a) (b) (c)

Figure 2. Image restoration based on the Q-Ising model (Q = 4). The original image f
is generated by the a priori probability distribution (3). (a) Original image f (α = 0.75).
(b) Degraded image g ((Q − 1)p = 0.3). (c) Restored image f̂ obtained by the Bethe
approximation.

β(p)

α = 0.58899

0.5 1.0 1.5 2.0 2.5
0

0.25

0.50

0.75

1.00

β(p)

α = 0.62021

1.0 1.5 2.0 2.5 3.0
0

0.25

0.50

0.75

1.00

(a) (b)

Figure 3. β(p)-dependence of the left-hand side and the right-hand side of equation (8)
corresponding to the image restorations shown in figures 1 and 2. The left-hand side and the
right-hand side are shown as open circles and solid circles, respectively. (a) Q = 3. (b) Q = 4.
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α

(Q− 1)p = 0.27166
β(p) = 1.67937

0.3 0.4 0.5 0.6 0.7 0.8
0

0.25

0.50

0.75

1.00

α

(Q− 1)p = 0.27153
β(p) = 2.08551

0.3 0.4 0.5 0.6 0.7 0.8
0

0.25

0.50

0.75

1.00

(a) (b)

Figure 4. α-dependence of the left-hand side and the right-hand side of equation (9) corresponding
to the image restorations shown in figures 1 and 2. The left-hand side and the right-hand side are
shown as open circles and solid circles, respectively. (a) Q = 3. (b) Q = 4.

β(p)

α = 0.58899

0.5 1.0 1.5 2.0 2.5
-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

β(p)

α = 0.6202100
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-1.0
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(a) (b)

Figure 5. β(p)-dependence of the logarithm of marginal likelihood per pixel, 1
|�| ln Pr{G =

g|α, p}, corresponding to the image restorations shown in figures 1 and 2. (a) Q = 3. (b) Q = 4.

α

(Q− 1)p = 0.27166
β(p) = 1.67937

0.3 0.4 0.5 0.6 0.7 0.8
-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

α

(Q− 1)p = 0.27153
β(p) = 2.08551

0.3 0.4 0.5 0.6 0.7 0.8
-1.4

-1.3

-1.2

-1.1

-1.0

-0.9

(a) (b)

Figure 6. α-dependence of the logarithm of marginal likelihood per pixel, 1
|�| ln Pr{G = g|α, p},

corresponding to the image restorations shown in figures 1 and 2. (a) Q = 3. (b) Q = 4.

and the improvement in the signal to noise ratio, 
SNR,


SNR ≡ 10 log10

(∑
i∈�(gi − fi)

2∑
i∈�(f̂i − fi)2

)
(dB) (21)
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Table 1. Approximate 95% confidence intervals for the hyperparameters, p and α, and the values of
d(f , f̂) and 
SNR obtained for some degraded images g, which are produced for (Q − 1)p = 0.3
from 20 original images f . The 20 original images f are generated by Monte Carlo simulations
from the a priori probability distributions (3) for the Q-Ising models. The hyperparameters are
estimated by applying the Bethe approximation to maximum marginal likelihood estimation.

Q = 3 Q = 4

α 0.65 0.75
(Q − 1)p 0.30 0.30
α̂ [0.586 32 ± 0.001 367] [0.620 58 ± 0.001 314]
(Q − 1)p̂ [0.272 01 ± 0.001 011] [0.269 61 ± 0.000 748]
d(f , g) [0.298 02 ± 0.000 421] [0.298 06 ± 0.000 422]

d(f , f̂) [0.222 41 ± 0.000 854] [0.169 57 ± 0.000 565]

SNR (dB) [0.265 96 ± 0.052 205] [4.618 42 ± 0.032 449]

in decibels (dB). The definition of the signal to noise ratio RSNR(f , g) of the original image
f and the degraded image g is given by RSNR(f , g) ≡ 10 log10

( Variance of signal f
Variance of noise in g

)
(dB). The

original image f and the difference g − f = {gi − fi |i ∈ �} can be regarded as a signal
and noise, respectively. The variance of g − f is equal to 1

|�|
∑

i∈�(gi − fi)
2. The signal

to noise ratio RSNR(f , g) becomes small when the noise included in the degraded image g
is large. We can also consider the signal to noise ratio RSNR(f , f̂) in the same way. The
improvement in the signal to noise ratio is defined by 
SNR = RSNR(f , f̂) − RSNR(f , g),

which corresponds to the extent to which noise is reduced. For the cases of Q = 3 and Q = 4,
these confidence intervals are given in table 1. Clearly the true values of the hyperparameters,
α and p, lie outside the 95% confidence intervals. The phrase ‘95% confidence’ generally
means that the true parameter is included in the estimated interval in 95 out of 100 experiments
when the underlying approximation is valid. The present results might appear to throw doubt
on the accuracy in the Bethe approximation so far as estimating the values of p and α is
concerned. The fact that the confidence intervals do not include the true values indicate a
bias in estimating the hyperparameters using the Bethe approximation. However, the point
estimates of the hyperparameters are quite close to the true values in absolute terms. Further
investigation of the impact of these biases will be the subject of future research.

These results show that combining the Bethe approximation with maximum marginal
likelihood estimation gives us good results for hyperparameter estimation for the Q-Ising
model. In the image f given in figures 1(a), many pixels i have fi = 1 and there are some
small-sized clusters of which the neighbouring pixels have the same values as fi = 0 or
fi = 2. In the image f given in figure 2(a), many pixels i have fi = 1 or fi = 2 and there are
some large-sized clusters of which the neighbouring pixels have the same values as fi = 1 or
fi = 2. The images given in figures 1(a) and 2(a) seem to be different from each other. In
the probabilistic model given in equation (3), phase transition does not occur for the case of
Q = 3, though a phase transition does occur for the case of Q = 4. From table 1, it is clear that
the results for Q = 3 are not so good, though those for Q = 4 are satisfactory. For the case
of Q = 3, the images f generated by Monte Carlo simulation from the a priori probability
distribution (3) have many large regions in which the state of every pixel is fi = 1 and have
only small regions in which the state of every pixel is fi = 0 or fi = 2. Many large regions
consist only of state 1. It is difficult to recover such small regions by using our probabilistic
model. We expect that, if Q is odd, the generated images f have similar properties to the case
of Q = 3. On the other hand, the generated images f have many large regions in which the
state of every pixel is fi = 1 or fi = 2 and these patterns in the images f consist of two states
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(a) (b) (c)

Figure 7. Artificial 3-valued images f generated from the 256-valued standard images ‘girl’,
‘mandrill’ and ‘home’, obtained by thresholding (Q = 3). (a) Girl. (b) Mandrill. (c) Home.

(a) (b) (c)

Figure 8. Artificial 4-valued images f generated from the 256-valued standard images ‘girl’,
‘mandrill’ and ‘home’, obtained by thresholding (Q = 4). (a) Girl. (b) Mandrill. (c) Home.

(a) (b) (c)

Figure 9. Degraded images g which are produced for (Q − 1)p = 0.3 from the original images
f given in figure 7 (Q = 3). (a) Girl. (b) Mandrill. (c) Home.

1 and 2 for the case of Q = 4. We expect that, if Q is even, the generated images f will have
similar properties to the case of Q = 4.

We then performed numerical experiments based on the artificial images in figures 7 and 8.
The artificial images f are generated from the 256-valued standard images ‘girl’ and
‘mandrill’ by thresholding. Degraded images g, produced from the original images f with
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(a) (b) (c)

Figure 10. Degraded images g which are produced for (Q − 1)p = 0.3 from the original images
f given in figure 8 (Q = 4). (a) Girl. (b) Mandrill. (c) Home.

(a) (b) (c)

Figure 11. Restoration of the degraded images g given in figure 9 based on the Q-Ising model
(Q = 3). (a) Girl. (b) Mandrill. (c) Home.

(a) (b) (c)

Figure 12. Restoration of the degraded images g given in figure 10 based on the Q-Ising model
(Q = 4). (a) Girl. (b) Mandrill. (c) Home.

(Q − 1)p = 0.3, are shown in figures 9 and 10. The image restorations created by means
of the iterative algorithm using the Bethe approximation for the Q-Ising model are shown in
figures 11 and 12. We give in table 2 the estimates, p̂ and α̂, of the hyperparameters, and
the values of the Hamming distance d(f , f̂) as well as the improvement in the signal to
noise ratio, 
SNR (dB). The image ‘girl’ has many spatially smooth parts, whereas the image
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Table 2. The estimates p̂ and α̂ of the hyperparameters and the values of d(f , f̂) and 
SNR
obtained for some degraded images g, which are produced for (Q − 1)p = 0.3 from the original
images f given in figure 7 (Q = 3) and figure 8 (Q = 4). The hyperparameters are estimated by
applying the Bethe approximation to maximum marginal likelihood estimation.

Original image p̂ α̂ d(f , f̂) 
SNR (dB)

(a) Q = 3
Girl 0.296 86 0.873 67 0.066 94 8.801 03
Mandrill 0.297 94 0.724 26 0.194 96 3.560 09
Home 0.297 94 0.788 34 0.115 59 6.091 29

(b)Q = 4
Girl 0.280 52 0.787 99 0.098 07 8.892 41
Mandrill 0.343 97 0.623 62 0.240 57 4.081 05
Home 0.282 65 0.727 36 0.124 86 7.314 26

‘home’ has many spatially flat parts and the image ‘mandrill’ has many spatially changing
parts. However, the Q-Ising model gives us good results for the cases of both Q = 3 and
Q = 4.

6. Concluding remarks

In the present paper, we have investigated probabilistic image restoration when the Q-Ising
model is adopted as the a priori probability distribution. The practical algorithm was
constructed by using the Bethe approximation and the hyperparameters are determined so
as to maximize the marginal likelihood for each degraded image. We conclude that, for
many real world grey-level images, the Q-Ising model can provide good results. In numerical
experiments based on the original images given in figure 7, the estimated values of the
hyperparameter α are about 0.873 67, 0.724 26 and 0.788 34, as shown in table 2(a). For
such values of α, original images f generated by Monte Carlo simulations from the a priori
probability distribution (3) for the Q-Ising model will typically have most pixels in state 1.
However, the Q-Ising model does give us good results for real-world images when we use
such large values of α. We conclude that image restorations obtained by using probabilistic
models are not always dictated by the most likely configuration corresponding to the a priori
probability distribution.

Another important conclusion is that the Bethe approximation is clearly applicable to
probabilistic image restoration including the estimation of hyperparameters. Moreover,
the basic procedure in the algorithm can be reduced to dealing with very simple
equations (17)–(19). This procedure corresponds to loopy belief propagation in artificial
intelligence [8]. In the numerical experiments in the present paper, we have not applied an
expectation–maximization procedure to the maximization of the marginal likelihood, although
this is often done. Zhang [4] has succeeded in applying an advanced mean-field method within
the expectation-maximization procedure in the context of probabilistic image restoration.
Detailed investigation of an algorithm constructed by combining loopy belief propagation
with the expectation-maximization algorithm is a problem for future research.

The present authors employed the Bethe approximation in maximizing the marginal
likelihood Pr{G = g|α, p} of hyperparameters α and p. In the Bethe approximation, the
approximate free energy for every probabilistic model in equation (16) is given by

FBethe[{ρi, ρij |i ∈ �, ij ∈ B}] ≡
∑
i∈�

Fi[ρi] +
∑
ij∈B

(Fij [ρij ] − Fi[ρi] − Fj [ρj ]), (22)
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where

Fi[ρi] ≡
∑
ζ∈Q

ρi(ζ )ln

(
ρi(ζ )

ψi(ζ )

)
(23)

Fij [ρij ] ≡
∑
ζ∈Q

∑
ζ ′∈Q

ρij (ζ, ζ ′)ln
(

ρij (ζ, ζ ′)
ψi(ζ )φij (ζ, ζ ′)ψj (ζ ′)

)
. (24)

The simultaneous fixed-point equations (17)–(19) are equivalent to the extremum conditions of
the Bethe free energy FBethe[{ρi, ρij |i ∈ �, ij ∈ B}] with respect to the marginal probability
distributions {ρi, ρij |i ∈ �, ij ∈ B} under the constraints

∑
ζ∈Qρi(ζ ) = 1 (i ∈ �),∑

ζ∈Q

∑
ζ ′∈Qρij (ζ, ζ ′) = 1 (ij ∈ B) and ρi(ξ) = ∑

ζ∈Qρij (ξ, ζ ) (ξ ∈ Q, j ∈ ci , i ∈ �).
However, it is known that the Bethe free energy FBethe[{ρi, ρij |i ∈ �, ij ∈ B}] does not
provide any bounds for the true free energy F[ρ] = −ln

(∑
z

∏
i∈�ψi(zi)

∏
ij∈Bφij (zi, zj )

)
,

while a mean-field free energy is a bound for the true free energy [7]. Furthermore, in some
cases the solution of the simultaneous fixed point equations (17)–(19) corresponds not to a
local minimum but to a saddle point of the Bethe free energy [14]. In spite of that, the present
scheme provides satisfactory results. The Bethe approximation often gives us poor results for
some Ising models with frustration effects [15, 16]. Frustration effects in probabilistic models
cause poor results in the Bethe approximation. The present a priori probabilistic model (3)
corresponds to spatially uniform ferromagnetic interactions and has no frustration effect. The
frustration effects in the present a posteriori probabilistic model (4) come from only a part
of spatially non-uniform external fields −β(p)δfi ,gi

and is very small at that. This seems to
be a qualitative explanation for obtaining satisfactory results in the present scheme in spite of
some problems in the Bethe approximation.

Inoue and Carlucci [10] adopted Q-Ising models with infinite-range interactions as
a priori probability distributions and investigated statistical performance in terms of some
distances between the original and the restored images, calculated by using the replica method.
In addition, some of the present authors have investigated hyperparameter estimation by
applying the replica method to the maximization of the marginal likelihood for the spin- 1

2
Ising model with infinite-range interactions. In work in progress we are extending the
framework to the Q-Ising model with infinite-range interactions. The results will be reported
elsewhere [17].
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